40 research outputs found

    Spatial modeling of individual-level infectious disease transmission: Tuberculosis data in Manitoba, Canada

    Get PDF
    Geographically dependent individual level models (GD-ILMs) are a class of statistical models that can be used to study the spread of infectious disease through a population in discrete-time in which covariates can be measured both at individual and area levels. The typical ILMs to illustrate spatial data are based on the distance between susceptible and infectious individuals. A key feature of GD-ILMs is that they take into account the spatial location of the individuals in addition to the distance between susceptible and infectious individuals. As a motivation of this article, we consider tuberculosis (TB) data which is an infectious disease which can be transmitted through individuals. It is also known that certain areas/demographics/communities have higher prevalent of TB (see Section 4 for more details). It is also of interest of policy makers to identify those areas with higher infectivity rate of TB for possible preventions. Therefore, we need to analyze this data properly to address those concerns. In this article, the expectation conditional maximization algorithm is proposed for estimating the parameters of GD-ILMs to be able to predict the areas with the highest average infectivity rates of TB. We also evaluate the performance of our proposed approach through some simulations. Our simulation results indicate that the proposed method provides reliable estimates of parameters which confirms accuracy of the infectivity rates

    Simulation-based Bayesian inference for epidemic models

    Get PDF
    This is the author pre-print version. The final version is available from the publisher via the DOI in this record.A powerful and flexible method for fitting dynamic models to missing and censored data is to use the Bayesian paradigm via data-augmented Markov chain Monte Carlo (DA-MCMC). This samples from the joint posterior for the parameters and missing data, but requires high memory overheads for large-scale systems. In addition, designing efficient proposal distributions for the missing data is typically challenging. Pseudo-marginal methods instead integrate across the missing data using a Monte Carlo estimate for the likelihood, generated from multiple independent simulations from the model. These techniques can avoid the high memory requirements of DA-MCMC, and under certain conditions produce the exact marginal posterior distribution for parameters. A novel method is presented for implementing importance sampling for dynamic epidemic models, by conditioning the simulations on sets of validity criteria (based on the model structure) as well as the observed data. The flexibility of these techniques is illustrated using both removal time and final size data from an outbreak of smallpox. It is shown that these approaches can circumvent the need for reversible-jump MCMC, and can allow inference in situations where DA-MCMC is impossible due to computationally infeasible likelihoods. © 2013 Elsevier B.V. All rights reserved.T. J. M. was in part supported by Department for the Environment, Food and Rural Affairs/Higher Education Funding Council of England, grant number VT0105 and BBSRC grant (BB/I012192/1). J. V. R was in part supported by Australian Research Council’s Discovery Projects funding scheme (project number DP110102893). R. D. was in part supported by Natural Sciences and Engineering Research Council (NSERC) of Canada’s Discovery Grants Program. A. R. C. was in part supported by National Medical Research Council (NMRC/HINIR/005/2009) and NUS Initiative to Improve Health in Asia. The authors would like to thank Andrew Conlan and Theo Kypraios for useful discussions

    How to make predictions about future infectious disease risks

    Get PDF
    Formal, quantitative approaches are now widely used to make predictions about the likelihood of an infectious disease outbreak, how the disease will spread, and how to control it. Several well-established methodologies are available, including risk factor analysis, risk modelling and dynamic modelling. Even so, predictive modelling is very much the ‘art of the possible’, which tends to drive research effort towards some areas and away from others which may be at least as important. Building on the undoubted success of quantitative modelling of the epidemiology and control of human and animal diseases such as AIDS, influenza, foot-and-mouth disease and BSE, attention needs to be paid to developing a more holistic framework that captures the role of the underlying drivers of disease risks, from demography and behaviour to land use and climate change. At the same time, there is still considerable room for improvement in how quantitative analyses and their outputs are communicated to policy makers and other stakeholders. A starting point would be generally accepted guidelines for ‘good practice’ for the development and the use of predictive models

    Disease prevention versus data privacy : using landcover maps to inform spatial epidemic models

    Get PDF
    The availability of epidemiological data in the early stages of an outbreak of an infectious disease is vital for modelers to make accurate predictions regarding the likely spread of disease and preferred intervention strategies. However, in some countries, the necessary demographic data are only available at an aggregate scale. We investigated the ability of models of livestock infectious diseases to predict epidemic spread and obtain optimal control policies in the event of imperfect, aggregated data. Taking a geographic information approach, we used land cover data to predict UK farm locations and investigated the influence of using these synthetic location data sets upon epidemiological predictions in the event of an outbreak of foot-and-mouth disease. When broadly classified land cover data were used to create synthetic farm locations, model predictions deviated significantly from those simulated on true data. However, when more resolved subclass land use data were used, moderate to highly accurate predictions of epidemic size, duration and optimal vaccination and ring culling strategies were obtained. This suggests that a geographic information approach may be useful where individual farm-level data are not available, to allow predictive analyses to be carried out regarding the likely spread of disease. This method can also be used for contingency planning in collaboration with policy makers to determine preferred control strategies in the event of a future outbreak of infectious disease in livestock

    Optimal treatment allocations in space and time for on-line control of an emerging infectious disease

    Get PDF
    A key component in controlling the spread of an epidemic is deciding where, whenand to whom to apply an intervention.We develop a framework for using data to informthese decisionsin realtime.We formalize a treatment allocation strategy as a sequence of functions, oneper treatment period, that map up-to-date information on the spread of an infectious diseaseto a subset of locations where treatment should be allocated. An optimal allocation strategyoptimizes some cumulative outcome, e.g. the number of uninfected locations, the geographicfootprint of the disease or the cost of the epidemic. Estimation of an optimal allocation strategyfor an emerging infectious disease is challenging because spatial proximity induces interferencebetween locations, the number of possible allocations is exponential in the number oflocations, and because disease dynamics and intervention effectiveness are unknown at outbreak.We derive a Bayesian on-line estimator of the optimal allocation strategy that combinessimulation–optimization with Thompson sampling.The estimator proposed performs favourablyin simulation experiments. This work is motivated by and illustrated using data on the spread ofwhite nose syndrome, which is a highly fatal infectious disease devastating bat populations inNorth America

    Epidemic reconstruction in a Phylogenetics framework:Transmission trees as partitions of the node set

    Get PDF
    The reconstruction of transmission trees for epidemics from genetic data has been the subject of some recent interest. It has been demonstrated that the transmission tree structure can be investigated by augmenting internal nodes of a phylogenetic tree constructed using pathogen sequences from the epidemic with information about the host that held the corresponding lineage. In this paper, we note that this augmentation is equivalent to a correspondence between transmission trees and partitions of the phylogenetic tree into connected subtrees each containing one tip, and provide a framework for Markov Chain Monte Carlo inference of phylogenies that are partitioned in this way, giving a new method to co-estimate both trees. The procedure is integrated in the existing phylogenetic inference package BEAST.Comment: 40 pages, 3 figure

    Representation bias in field trials for airborne plant pathogens

    No full text
    Available from British Library Document Supply Centre-DSC:DXN047304 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Inference in epidemic models without likelihoods

    No full text
    10.2202/1557-4679.1171International Journal of Biostatistics51
    corecore